Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 2 of 2 results
1.

Optogenetic control of Wnt signaling models cell-intrinsic embryogenic patterning using 2D human pluripotent stem cell culture.

blue CRY2/CRY2 hESCs human IPSCs Signaling cascade control Control of cytoskeleton / cell motility / cell shape Developmental processes
Development, 4 Jul 2023 DOI: 10.1242/dev.201386 Link to full text
Abstract: In embryonic stem cell (ESC) models for early development, spatially and temporally varying patterns of signaling and cell types emerge spontaneously. However, mechanistic insight into this dynamic self-organization is limited by a lack of methods for spatiotemporal control of signaling, and the relevance of signal dynamics and cell-to-cell variability to pattern emergence remains unknown. Here, we combine optogenetic stimulation, imaging, and transcriptomic approaches to study self-organization of human ESCs (hESC) in two-dimensional (2D) culture. Morphogen dynamics were controlled via optogenetic activation of canonical Wnt/β-catenin signaling (optoWnt), which drove broad transcriptional changes and mesendoderm differentiation at high efficiency (>99% cells). When activated within cell subpopulations, optoWnt induced cell self-organization into distinct epithelial and mesenchymal domains, mediated by changes in cell migration, an epithelial to mesenchymal-like transition, and TGF-β signaling. Furthermore, we demonstrate that such optogenetic control of cell subpopulations can be used to uncover signaling feedback mechanisms between neighboring cell types. These findings reveal that cell-to-cell variability in Wnt signaling is sufficient to generate tissue-scale patterning and establish an hESC model system for investigating feedback mechanisms relevant to early human embryogenesis.
2.

Optogenetic control of Wnt signaling for modeling early embryogenic patterning with human pluripotent stem cells.

blue CRY2/CRY2 hESCs human IPSCs Signaling cascade control
bioRxiv, 10 Jun 2019 DOI: 10.1101/665695 Link to full text
Abstract: The processes of cell proliferation, differentiation, migration, and self-organization during early embryonic development are governed by dynamic, spatially and temporally varying morphogen signals. Analogous tissue patterns emerge spontaneously in embryonic stem cell (ESC) models for gastrulation, but mechanistic insight into this self-organization is limited by a lack of molecular methods to precisely control morphogen signal dynamics. Here we combine optogenetic stimulation and single-cell imaging approaches to study self-organization of human pluripotent stem cells. Precise control of morphogen signal dynamics, achieved through activation of canonical Wnt/β-catenin signaling over a broad high dynamic range (>500-fold) using an optoWnt optogenetic system, drove broad transcriptional changes and mesendoderm differentiation of human ESCs at high efficiency (>95% cells). Furthermore, activating Wnt signaling in subpopulations of ESCs in 2D and 3D cultures induced cell self-organization and morphogenesis reminiscent of human gastrulation, including changes in cell migration and epithelial to mesenchymal transition. Our findings thus reveal an instructive role for Wnt in directing cell patterning in this ESC model for gastrulation.
Submit a new publication to our database